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ABSTRACT

Dynamic crack propagation in viscoelastic media is studied

experimentally with a polyester known as Homalite 100 and a

polyurethane known as Solithane 113 at various temperatures.

Employing the optical method of caustics-[U2s-5], high speed

photography is used to determine the variation of the stress

intensity factor and the velocity of a running crack initiated

and driven by the dynamic step loading on the faces of an

initial semi-infinite track in an infinite medium. The loading

condition is simulated experimentally with the technique

introduced by Smith and Knauss {[.&. In this work an application

of the method of caustics is extended for the determination of

the time dependent stress intensity factor of a running crack

in a viscoelastic material. Also, the viscoelastic effects on

the initiation of a running crack, the variation of the stress

intensity factor, the speed of the crack and the branching of

the running crack are discussed. In addition, a mechanism of

branching is proposed based on the study of the fracture

surfaces.



1 INTRODUCTION

When one compares the progress made in understanding quasi-

static fracture with that related to dynamic crack propagation

one is impressed with the wide range of engineering applications

in which quasistatic fracture analyses have proven useful. Speaking

comparatively, much less understanding has been generated for

dynamics related problems. No doubt it is primarily a matter of

time before a body of knowledge on dynamic fracture has been

developed that has a design oriented impact comparable to that

which is now offered with respect to quasi-static fracture.

The problem of dynamic fracture in viscoelastic solids has

enjoyed a proportionately still smaller degree of attention. This

is in part due to the fact that a) viscoelastic solids are

relative newcomers on the engineering scene, b) analytical

treatment of dynamics problems is significantly more difficult

than for purely elastic materials and c) interpretation of

experimental work is severely limited by the lack of analytical

understanding.

Because of this relative paucity of effort in dynamic

fracture, there appears to have emerged in recent years several

attempts to improve our empirical knowledge of dynamic fracture.

However, these new developments are almost exclusively devoted to

the fracture of rate insensitive materials. While experimentation

proceeds with polymeric solids as test materials these polymers
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are chosen as metal substitutes primarily for reason of convenience;

their viscoelastic behavior tends to be an undesirable inconvenience

rather than a chosen characteristic.

This report outlines work conducted to better define and

predict the friability of strongly viscoelastic solids, and

oriented to better understand the effects of viscoelastic material

behavior on the fracture process with particular attention devoted

to comminution related problems. The motivation for this work

derives from problems encountered in understanding safety

limitations in handling the new high energy solid propellants

(vulnerability) as well as the problem of deflagration-to-detonation

transition (DDT). Both phenomena depend potentially strongly on

the rapid generation of large amounts of new (burning) surface

such as is observed to occur usually in dynamic fracture processes.

The time scale of dynamic fractures is typically in the high

microsecond range (hundreds of psec) anO thus of the same order

experienced in a motor DDT.

The basic interest here is to understand the conditions that

lead to crack branching. For, if crack branching criteria can

be established one would, in principle, be able to estimate

whether the dynamic stresses accompanying DDT could cause a

rapid proliferation of crack surface via branching and thus feed

the DDT process by offering a rapidly growing burning surface.

There are several important issues that are subordinate to

this basic question:
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a) Wave propagation in viscoelastic solids: Simple problems

of wave propagation involving viscoelastic material behavior are

fairly well understood; so is the attenuation of propagating waves

in simple geometries. However, in geometries involving cracks or

even propagating cracks much less is known. It is hoped that work

going on at this time at other institutions can usefully complement

the present effort in the future. Of particular interest would be

information on the crack tip strain field of a running crack.

b) A problem similar and related to that just mentioned under

a) is the experimental identification of the crack tip stresses.

To date this has been accomplished via optical caustics, although

a slightly more laborious method, namely photoelasticity, could be

employed. In either case the modification enforced by viscoelastic

material behavior offers a major complication. To date we have

assumed in part of our work employing caustics that a modicum of

viscoelastic behavior does not materially effect the caustics, so

that the crack tip stresses are approximately determined by the

caustics as interpreted via linear elasticity. For other parts of

our investigation concerned with a stronger viscous material

component that assumption is not justified and ad hoc modifications

are used as indicated later on in this report.

c) Probably an important consideration in any explanation or

theory for multiple crack branching is the microstructural

response of the material at the crack tip. To date little

attention has been paid to this fact, in part because virtually no
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information exists on its likely effect. As a consequence we

report here some detailed, if initial information on how the

material responds as crack branching is approached.

d) With this problem of micro structural effects is connected

the general question of constitutive behavior of viscoelastic

propellant materials under high rates of loading. That behavior

is fairly well understood, as far as engineering accuracy is

concerned as long as (strain) loading rates are below, say,

1000/sec. However, when rates 1000 times higher are involved

time-temperature superposition is somewhat questionable without

some further tests.

2 BRIEF EXPERIMENTAL REVIEW

In this work the fracture of viscoelastic polymers under

dynamic loading is studied. The loading condition is a step

loading on the faces of a semi-infinite crack in an unbounded

visco-elastic two-dimensional plane. The condition is simulated

experimentally by applying on the crack faces electromagnetic

forces induced by a square pulse of high electric current flowing

in opposite directions through a doubled up thin copper strip; this

strip, the legs of which are separated by a Mylar insulator 125 Pm

thick, is inserted into the crack of a large specimen plate. In

order to control the intrinsic time scale of viscoelasticity, the
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temperature is changed through the use of the time-temperature

shift phenomenon. In these experiments, Homalite-100 is used at

three different temperatures (60°C, 800 C, 100°C) under three

different load levels. Solithane 113 (50/50) is also used in a

similar fashion. (0°C, -200 C, -40°C, -600C.)

The result of this study is basically divided into three

parts. The first part is the characterization of the stress state

near the crack tip, measuring the stress intensity factor K(t) as

a function of time in the given load history. This is done

experimentally by extending the method of caustics to viscoelastic

materials. This extension is discussed in detail in the following

sections [4,5,6]. For a qualitative comparison, the stress analysis

is also performed analytically for the case of a stationary crack in

antiplane shear (mode III) deformation within the realm of linear

viscoelasticity. Also discussions of elastic analyses [7-16] and

viscoelastic analysis [17,18] for the moving crack are mentioned.

The second part of this report concerns the process of

fracture under the characterized stress state at the crack tip.

This is investigated by relating the stress intensity factor and

the corresponding velocity of the extending crack, and by

observing the fracture surfaces microscopically. Together with

the data of crack velocities at various temperatures, data for

the initiation of a running crack are obtained. In addition it

appears to turn out that the micromechanism of crack propagation

is related to the stability of the crack front in the fracture
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surface plane; this behavior may be interpreted to produce

discontinuous crack growth with tae attendant generation of

rough surfaces.

In the third part of this report we make some observations

on the behavior of crack branching. In this work a possible

mechanism of crack branching is suggested, which may explain the

continuous energy release rate before and after branching.

Observations seem to show that the branching is preceeded by the

sequence of (i) division of crack front in the fracture surface

plane, (ii) deviation of each of the new crack fronts from the

original fracture surface plane due to crack path instability,

and (iii) interaction of the deviated crack fronts which would

cause further global branching depending on the stress state near

the global crack front and finally (iv) helical climbing of the

crack front and subsequent side cutting. Details of this

mechanism are given in section 7 with the picture of fracture

surfaces near the place where the crack branching occurred.

For further study, more effort has to be expended in

obtaining analytical results for the transient behavior of

running cracks in viscoelastic media under dynamic loading. Also,

analytic modelling of the instability of the crack front has to

be improved. Finally, since irreversible heat dissipation is

important in the process of viscoelastic fracture, thermodynamic

considerations need to be examined for the study of the energy

balance by measuring other physical quantities such as the
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temperature rise at the running crack tip.

3 ANALYSES OF VISCOELASTIC DYNAMIC FRACTURE

In preparation for the experiments described later on we

consider now the analyses of dynamically loaded cracks in a two

dimensional domain. The appropriate geometry is shown in fig. 1.

For the purposes of this analysis we consider that the dynamic

loading is achieved in step fashion and is applied to the faces

of the semi-infinite crack embedded in the unbounded medium. From

a practical point of view, this problem is appropriate for our

later experiments as long as the plate dimensions used in the

experiments are so large, that during the course of the experiment

no reflected waves from the boundary arrive back at the (moving)

crack tip. In terms of the linear analyses employed subsequently

the stresses near the crack tip can be characterized by the

singularity expansion which is characterized in part, by the

stress intensity factor. This stress intensity factor varies as

a function of the load history and as a function of the crack tip

velocity. For dynamic linearly elastic problems in the plane the

analytical tools have been well developed by Achenbach and

Freund [11-16]. As a result of these analyses it is well known that

the dynamic stress intensity factor can be expressed in the form

K[e(t),j(t)] = k[ (t)]K[e(t),0] (i)
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In this expression t(t) denotes the instantaneous crack length

and the dot connotes differentiation with respect to time. Note

that this stress intensity factor is of a product form, in which

the second factor is the stress intensity factor corresponding

to the corresponding static problem and the first factor is a

function of the instantaneous crack speed only. We observe also

that the static stress intensity factor can be computed from

t
K[t(t),QJ =O f KF P( dE') dX (2)

-0 F (X 't _) 3 )

where KF(X,t) is a Green's function solution for the stress

intensity factor of a stationary crack, to the surface of which a

delta function has been applied in step fashion; E denotes the

distance parameter along the crack length measured from the tip

and P is the distributed pressure which is a function of this

distance parameter x as well as a function of time C.

When viscoelasticity is involved the solution indicated in

equation (1) is no longer valid; it turns out that for even

stationary cracks the stress intensity factor resulting from the

fundamental solution of a Dirac delta function to the crack

surfaces is not available; in other words, the function KF(X't-0)

is not known at this time. Because this general tool of computing

dynamic stress intensity factors for linearly elastic problems

does not have a counter-part in viscoelasticity, there appear to

be at this time only a few solutions to problems available in

. ......~ ~ ~ 01 1 11-11 , ,_ "~~
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which special boundary conditions have been imposed and in which

rather special constitutive relations are used. For example,

Atkinson and List [17] solved an antiplane shear problem (mode III)

in which loading was applied as a step function in time, and in

which the viscoelastic material was represented as a standard

linear solid. Moreover, in this problem the crack was considered

to move with a constant velocity which starts instantaneously at

time zero and the loading follows the moving crack. This physical

situation would correspond to an instantaneously applied gas

pressure which can spread with the same velocity with which the

crack propagates. In spite of the simplicity of the physical

problem and inspite of the limitations in the applicability of

these resultselater experimental problen it is interesting to

extract from this analysis the following observation: If the

velocity of a crack is sufficiently high then for large time

after the crack starts to grow the stress intensity factor

approaches a constant value; this constant value depends on the

crack tip velocity v for the condition > where c -/TT7-.

We further extract from this solution that the change of this

stress intensity factor for very short times after the step

loading has been accomplished is also given by the elastic

solution. This is even true if the material is represented by a

Maxwell model.

* This problem is considered for the special constitutive equation

suggested by Achenbach and Chao [19]

d +a)2a = 2p(dt+ )2 E; (3)
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Observe now that we are interested in short term behavior in

our later experiments; in particular we are interested in the

fracture of viscoelastic materials that may approach brittle

fracture in non-viscoelastic materials. For this reason we carry

out first the subsequent analyses for dynamic loading on the

crack faces, allowing, however, the crack to remain stationary

in the linearly viscoelastic solid. Because we are dealing with

a semi-infinite crack in the infinite domain there is no

characteristic length in this formulation. For this reason it

turns out that even for a linearly viscoelastic material the

Laplace transformed solution can be manipulated with the aid of

the Wiener-Hopf technique. Thereafter the solution procedure is

basically the same as for the linearly elastic case. The difficulty

arises thereafter, because it is still necessary to determine the

inverse Laplace transform which in the elastic case is carried out

most easily in terms of the Cagniard-Hoop [20 method. In the

viscoelastic case this method cannot be exercised because it is

extremely difficult to define the double inversion variable

consisting of the spacial variable y and the time variable t.

Instead we perform a single inversion on the spacial variable y

to leave a solution that depends on the time-time like Laplace

variable s.

Consider the semi-infinite crack under shear loading as

shown inset in figure 2a. The shear stress

= - TH(t) (4)



is applied to the crack surfaces embedded in the infinite domain,

the motion of which is governed by the single, non-trivial

equation of motion

yz,y a xz,x -0 (5)

where w is the velocity component in z direction, augmented by

the strain displacement compatibility conditions and stress-strain

relations (G(t) = relaxation modulus in shear)

aw _ aExz aw _ yz (6)
ax at ' ay at

t a t

fX 0 p(t-) ---xz d = f0 a(t-,)w dE (7a)

t a t

Iz fvi1(t-E) 3E- dE = '0 (t-O-)awd (7b)

Upon Laplace transforming these equations we have

aYZIy + axzPx - pb = 0 (8)

xz - u~) - (9a)

aw

yz =

which equations combine to render the field equation for w

V 2 w = 0 (10)

with the attendant boundary conditions
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ay(x,o;s) = ( = - ; x < 0 (11)

w(x,o;s) = 0 x > 0 (12)

Apply now the two-sided Laplace transform to w with

respect to "x" resulting in

0 (ny;s) = f j_(x,y;s)e - Yn x dx (13)

where y = /ps/. Equation (10) becomes then

d2 .y2(l - n2)W- = 0 (14)

dy2

with the solution (vanishing at y -)

I= A(n,s)e-y'y; =t/i - 2 Re > 0 (15)

Evaluation of the boundary conditions (11) and (12).

suitably transformed yields

'(n,o;s) = f0 W(x,o;s)eYn x dx (16)

= F_(n;s) = A(n;s)

which is analytic for Re n < 0.
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0o _n + '*-Y(x, o.s) e- nx dx
ayz(no;s) = f s e dx fo,

_T + F+(n;s) (17)

- a = ;Po YIy=0 yAns

where F+(n,s) is analytic for Re n >-l. Thus, upon eliminating

A(n;s) from (16) and (17)

F+(n;s) = - [y F -n(18)

We apply now the Wiener-Hopf technique after writing (18) as

F]
F+ + T- _i i]=- 4F (19)

+ C + (0) ySn4+(0)

where c=+ and += (1+n) ; _ =(l-n) and +(O) are the

appropriate limits of + and _ as n 0.

Considering n -+= it follows from the fact that the left

side and right side of (19) are entire functions in their

respective half planes and vanish there one has

orly FM : O (20)

or
A(s,n) F_ - (21)

- Y 2snc+(0) 4-
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The inverse of 16 yields then

ey(nx- y)
w(x,y;s) = - 2 , * e d( ) (22)

jy 2S+(O)2ni B )

JBr ey (nx- y)
IVYs 2Ti n(-) d

and from (17)

- - aw T f ae Y(nx-y)
(X,y;s) P - = -e (23)

yz ay 27is Br n(l-n) -;3

Here Br denotes the Bromwich integration

contour shown in the sketch.

Upon applying the Cagniard-Hoop 0

transformation one finds for y = 0.

aYz(x.o;s) = s -  - eY(+x) d (24)
nsx +x

from which it follows that the Laplace transform of the stress

intensity factor (with respect to time) is

lira ~' T w [ e-y

i(= im /2i z- LS fe d& (25)x 0 yz its 0/

X -s
T5'

..... ... , V. . , . . .. - , .. . .s l . . .' = T ....." " ' " " -:. . . . . . .. . ..
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In general this inversion needs to be carried out numerically.

However, for illustrative purposes we turn now to an evaluation

of this relation for a (viscoelastic) Maxwell solid, for which

= lioexp(- - t) (26)
no

with 110 and n0 being material constants. One has therefore

W(s) =-u

no

so that (25) becomes, with c
0 =
t

1=

K c i ss o +s)]- (27)

The inversion of (27) can be accomplished in terms of a

convolution integral to yield (r = Gamma function)

T c0 t 3 U 0
K(t) 5- 5 i I- 1 (t-E)4 e" W dE (28)

0

r r

In non-dimensional form this becomes, with K = lot,no

KI) - 3 _<p2K P (I-p) e dp (29)

21# -- K <<1

' 7> i

K K >>i

L ..r

-- - -- - A -. _ . m . . . .. . .. . ~ ~ .....
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The results, obtained, numerically from (29) are shown in

figures 2a and b.

4 EVALUATION OF THE STRESS INTENSITY FACTOR -

EXPERIMENTAL PRELIMININARIES

In experimental stress analyses relating to static or

dynamic cracks, there are generally two techniques that have

evolved during the past decades to measure stress intensity

factors. The most recent development in that direction has been

the method of caustics which is the one that is adopted in this

work. The somewhat older and more classical method is based on

photoelasticity. Either method has been employed to date primarily

to elastic materials. This is unequivocally true with respect to

dynamic problems. It turns out that the photoelastic method has

certain disadvantages for our investigation: Most important among

these restrictions is that the Homelite 100 material with which

we are working in a part of this investigation, is used in

relatively thin sheets (3/16 inch thick) and the fringe count

is not sufficiently high to give a reasonable number of fringes

in these tests. There are a number of fringe multiplication

techniques available; however, they require a large amount of

light which is not available in our set-up but which is required

for the very high speed photography used here. Apart from these

limitations arising from the specimen size and from the experimental

equipment it turns out that the fringe interpretation-through
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fitting an analytical expression in a least square fit- has

probably no greater accuracy than the limitations inherent in

the caustic method. Beyond this comparison it turns out that

the caustic method is well suited to our optical setup allowing

sufficient passage of light in a single pass from the laser light

source to expose the film during the 20 nano second exposure

required for stop action at 100,000 frames/sec as employed in

these tests. Moreover in some of our tests (on Solithane 113) the

rigidity of the test material is relatively small. As a consequence

somewhat larger than "normal" deformations occur which cause a

relatively large deflection of the light beam. As a result, it is

difficult to capture all this information with a reasonably

sized lense. In contrast the caustic method exhibits many fewer diffi-

culties and is relatively simple to apply. For this reason we

extend here the computations underlying the shape of the caustic

in elastic materials to viscoelastic fracture.

For reference purposes consider the optical set-up shown

in figure 3. Denote a generic point in the crack tip vicinity by

x and consider a light ray passing through this point x in the

loaded specimen. In the image plane the ray strikes the corresponding

point x' so that we have the transformation

= x + W(x,t) (30)

where we denote by w the deflection vector due to the stress

state near the crack tip. This deflection vector can be expressed
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as [3]

w(Xt) z0 grad As(x,t) (31)

where z is the distance between the stress specimen midplane

and the image plane and As is the change of the effective optical

path length

bs = d0 C*{o1 I + Ii +X(o - liI)} (32)

This change of the optical path length depends on the principal

stresses at the point x, on the specimen thickness do and on a

constant C (a shadow optical constant). If the material is

optically anisotropic a parameter x will enter into the relation

between the optical path length change and the state of stress.

For optically isotropic materials this constant or anisotropy

function is zero. For a viscoelastic material the optical path

length is a function of the stress history. Expressed mathematically

for a linearly viscoelastic system the path length difference is a

convolution with the stress state and the shadow optical function

C(t). For isotropic linearly viscoelastic material we have

therefore, instead of eq. (32),

As = d C*a (33)
O

where we have written a for the first stress invariant (sum of

the principal stresses) and allowed for isotropc behavior only.

Using these stress representations in the immediate vicinity of

the crack tip for which [21,22] with mode I stress intensity

factor KI,
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I -- K4 - cos+a (34)

where r , e = tan - and "a" is a constant. Making
1 2 x

use of equations (30), (31), (33) and (34) there results

x' = x + d0 z0 (C*KI ) grad (rcos-T) (35)

Employing now the condition that the Jacobian vanishes, that is

= 3(xj.x )

3(xI  x x2 )

one obtains for the shape equation of caustics the relation

3z d 2

r = -- C*K 5
2/-

or

K z 0= d ICI*r (36)3z d

This equation is, strictly speaking, true only for a stationary

crack and it is therefore used later on for the variation in the

stress intensity factor of a stationary crack (see section 5).

We now turn the measurement of the shadow optical function

C(t). Clearly the function C(t) is of primary importance in the

experimental evaluation of stress intensity factors in visco-

elastic materials.
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5 THE CAUSTIC FOR A STATIONARY CRACK IN A VISCOELASTIC MATERIAL

Equation (36) may be rewritten upon using equation (30), (31)

and (33) to yield

KI - 0C- 2D (37)50

3fz odo

In this latter form D denotes the diameter across the caustic in
0

the y-direction. The shadow optical function C is composed of two

contributions. One arises from the change of the index of

refraction, (denote this contribution by A) and by the lense like

deformation of the viscoelastic sheet and; this contribution is

given by (n-1)-- so that C may be defined as

C = A - (n - 1) (38)

Let us assume now that the contribution (optical relaxation) to a

change in the index of refraction is -,mall and proportional to

mechanical relaxation, say, e. 2 [23,24]; then C is given only by

the rigidity contribution

C ( - n + E)L (39)

which allows us to write (37) as

3z dDs

(1- n + E) D()5*K
E I

Clearly this equation indicates that if a stress intensity factor

of known magnitude acts at the tip of the crackthen the caustic
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diameter D should grow in conformity with the shadow optic

function C(t). Moreover, this shadow optic function should be

directly proportional to the creep compliance - or at worst a

convolution of a creep compliance and Poisson's ratio - in

accordance with equation (39).

In order to test out this relation it is appropriate to make

use of the viscoelastic properties of Solithane 113 and device a

geometry with a non-propagating crack. Such a geometries is given

by a large sheet with a central crack perforation. The stress

intensity factor for this problem remains constant if a step

function as the far field stress is applied. In fig. 4a and b we

show a sequence of time exposures of a caustic at the tips of

such a crack in Solithane 113. These particular figureswere taken

at -10 and -15°C; clearly the diameter of the caustic is seen to

grow with time after load application. This type of data is then

obtained at three different temperatures and the results suitably

normalized are shown in figure 5. Also shown in that figure is

the reciprocal Young's relaxation modulus normalized by its value

at infinite time-that is, by its rubbery modulus. This function

is taken as an approximation to the creep compliance in uniaxial

tension. It is seen that the comparison of the analytical estimate

is quite reasonable with the data derived from tests. The data

derived from these three temperatures has been superposed according

to the time temperature shift phenomenon making use of the shift

factor which has been determined previously for Solithane-113 [25].
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In figure 6 the shadow optical function for Homalite 100 is given

reduced to a temperature of 600 C [24]. This curve is the result

of tests at temperatures of 60, 80 and 100 0 C with an estimated

scatter band as indicated by the error bar.

Both curves for the shadow optical functions are basic input

into the experimental determination of the stress intensity factor

for running cracks: The shape and size of the caustic involves a

convolution of this property with the deformation history at the

tip of the moving crack tip. We proceed to discuss now this

analytical problem.

6 ANALYTICAL DETERMINATION OF THE CAUSTICS FOR A CRACK

MOVING IN A VISCOELASTIC SOLID

We need to recall that analyses of the dynamic stress intensity

factor for a moving crack tip are usually formulated so that the

state variables such as stress, strain etc. are expressed in terms

of a position vector x which has its origin at the running crack

tip. In contrast the shadow optic function C(t) is a material

property and therefore the appropriate convolution "*" has to be

applied with respect to a fixed material point X in equation (32).

Accordingly the expression for the optical path length which is

commensurate with equation (32) is given by

t

As = do f C(t-T) ( -v - + -)IX d, (40)
ax1
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where v is the velocity of the crack tip and it is assumed that

the crack propagates in the x direction. An illustrative trajectory

of the material path in the t-xI plane is shown in figure 7.

Let us now turn to consider an approximation for the caustic

in a viscoelastic material arising from a crack tip moving through

a two dimensional geometry. We consider this in the context of a

problem of plane stress. Drawing on the results with the stationary

crack in which case this stress at the crack tip could be written

as a product function of a time dependent stress intensity factor

and a function representing this spatial distribution of the

stresses, we write tentatively for the dynamic case

a[x(X,t),t] = K(t)f[x(X,t);v] + a (41)

Although there exists an explicit form for the function f(x;v)

for the case of dynamically moving cracksin an elastic material

this function is not available for the viscoelastic material.

However, in order to arrive at an adequate estimate we note that

the speed of cracks in viscoelastic materials tends to be

relatively low. This observation allows us to disregard dynamic

effects in this stress distribution so that we may make use of the

quasi-static stress distribution as an approximation. In accordance

with equation (34) we use

f(x) = 1 +12 } (42)

ir (X2+X2)
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It is a general observation that for crack propagation velocities

less than about half the Rayleigh surface wave speed, the error

due to the use of quasi-static behavior is within the range of

experimental error for the elastodynamic crack problem. Making

use of this assumption, we obtain for the deflection vector of

the light rays in passing through the deformed crack tip area,

via equations (31), (34), (39) and (42) as
t

w[x(X,t)] = dozograd[f tC(t- ){-K( )v(&) a- - [x(X, )]
(43)

+ 1K(1) f[x(X,&)]} d$]

Upon integrating this by parts we obtain the result

w[x(X,t),t] = d0 zo{K(t)C(o)grad f[x(X,t)] (44)

t+f C' (t-O)K(O)grad f[x(X,)]d0}

to

where to denotes the time when the loading of K(t) begins and

C'(t) dC
dt'

In order to compute the shape of the caustic we have to

make use again of the condition that the Jacobian of the

transformation
a(x

I ',xp)J = a(XlX2)=0

represented by equations (30) and (45) vanishes. However, we are

not really interested in the shape of the caustic for a given

. .
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history of the stress intensity factor. Rather,we are only

interested in the .-easurement of the stress intensity factor as a

function of velocity and time. It indeed turns out from experiments

described later that the shape of the caustic for a crack running

in a viscoelastic material is not much different at all from that

of the stationary crack for the velocities encountered in our

experiments. In order to determine the radius of the initial curve

it is therefore not necessary to compute the total shape of the

caustic; rather it is sufficient to compute this radius "r0 " by

using the condition that on the crack axis

xi  =,(45)

"'= X2=0 O

Let us make the further assumption that the stress intensity

factor varies slowly. This is actually a condition found in our

experiments. Then 2K =0 and the second term in eq.

(43) is assumed to be negligibly small due to the structure of

the function f[x(X,T)]. If in addition the acceleration of the

crack is small we can obtain from equation (43) the deflection

vector of the light rays as

t
wl[x(X,t),t] = -dozoK(t)v(t)f C(t- )- (46)

I~ . [x(X, )]d

3xI2

where

An.
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xlCX,&) = xl(X,t) + (t- )vo  (47)

and v0 denotes the speed of the crack. Then, the condition

= 0 (or l = -1)

a1 X2 =0 1x x 2 =0

renders the stress intensity factor

K= (48)
IC(x/vo) I15doZo 1 dx

o (r0+x)

Let us now examine the limit expressions for the stress

intensity factor in eq. (48) namely for the cases of vanishing

and for infinite crack propagation velocity vo. One has then

5
2/2- r vo 0 (49)3ZodoIC( v)I 0 0

5

3zod0IC(o)J 00

These expressions correspond to the elastic expressions except

that the optical constants are replaced by C(-) and C(o),

respectively. In general the function C(@/v ) is the function

shown in figures 5 and 6 for Solithane 113 and Homalite 100,

respectively.

In any experiment the diameter of the caustic along the

line normal to the plane of crack propagation is used as a

definition for the size of the caustic. This diameter D is
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related to the radius of the initial curve by ro=mD. For the

case of parallel incident light, this constant is, for a

stationary crack, equal to m = 1/3.17. We have now estimated the

size of the caustic and thus provided the tool to measure the

stress intensity factor instantaniously for a crack propagating

in a viscoelastic material.

7 APPEARANCE OF FRACTURE SURFACES SMOOTHNESS AND BRANCHING

RELATED SURFACE FEATURES

In this section we discuss the physical appearance of

fracture surfaces generated in dynamic tests on Solithane-113

and Homalite-100. In either material the temperature was adjusted

so as to move towards the more viscoelastic response of the

material in the vicinity of the glass transition temperature. For

the polyester Homalite-100 which has a glass transition temperature

in the vicinity of 1000C this implied heating, while for the

polyurethene Solithane-113 with a glass transition temperature of

approximately -20 C this implied cooling.

Let us first consider the behavior of Homalite-100. An

initial set of tests was performed at distinct pressure levels and

different temperatures, namely, in a test matrix consisting of

pressures on the crack surfaces of 133, 357 and 805 psi. For each

of these pressure levels tests were conducted at 60, 80 and 1000C.

The objective was to determine whether the crack propagation rate

varies significantly as a function of temperature and/or how
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branching was facilitated or suppressed. Figure 8 shows the

appearance of the crack path in each one of these nine tests.

One notes immediately that branching occurred only at 805 psi

and this occurrence was not systematic with the temperature

variation in the three tests, inasmuch as branching occurred at

60 and 100 0 C but not at 800C. We only note in this context that

the crack propagation rate for the 80 C and 805 psi test was

slightly smaller than the velocity associated with the 60 0C and

805 psi test.

The fracture surfaces corresponding to these tests are

shown in figure 9 with a more detailed view of the 805 psi 600 C

case shown in figure 10. Here we note that the appearance of the

fracture surfaces reflects essentially the branching or non-

branching characteristics of the test. Although this evidence may

be difficult to identify in the reproductions of this figure in

this report, closer examination of the actual photographs shows

that the 133 psi tests all produced only smooth fracture surfaces.

At 357 psi only the 600 C test produces a somewhat roughly

textured surface while the 80 and 100 0C tests produce smooth

fracture surfaces. This appearance is in keeping with the somewhat

smaller stress intensity factors encountered at 80 and 100°C when

compared to the 600C test. At 805 psi the 600C test produces a

typical transition in the appearance of the fracture surface from

"smooth", to "mist", to "hackle", then branching [26]. At the same

pressure at 800 C the surface remains relatively smooth, this
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indicates that branching was not approached even closely. At

1000C and 805 psi most of the surface appears relatively smooth;

however, there is a short transition from mist to hackle which

indicates possibly that the branching in this particular test

was precipitated by a flaw in the specimen andhad it not been

for this flaw, no branching might have occurred. This statement

is, however, essentially conjectured. We are thus not able to

state definitively that increasing the viscous response of the

material will suppress branching, although the slight indication

in that direction exists but only further testing will allow us

to examine the possible truth of this statement.

We consider next the appearance of the fracture surfaces of

Solithane-113. The physical appearance of the failed specimen is

summarized in figure 11. First note that the path of crack

propagation is rather similar to that in Homalite 100. One

concludes from this that the mechanics of wave propagation and

the conditions that determine the instantaneous orientation of

crack propagation are apparently not markedly affected by the

viscoelasticity of the material response. Note also from the

temperatures indicated in that figure, that most of these

Solithane tests have been conducted at or below the glass

transition temperature. However, in none of the tests branching

has been observed.

When one studies the fracture surfaces they exhibit the

typical transition from smooth to rough as the stress intensity
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factor increases and as branching is approached. It may appear

thus that branching was indeed approached but that the pressure

applied to the Solithane specimens was not quite large enough

to precipitate the branching phenomenon. The reason for this

failure to achieve branching in Solithane, may be two-fold. One

reason may be that the relatively large crack flank opening

displacements reduce the applied pressure and thus the stress

intensity. Moreover, the viscoelastic response can reduce the

stress intensity factor, also. However, as we have indicated earlier,

at temperatures of -20 0C or below this reduction should be

relatively small because the material is essentially in its

glassy state. Hence we discount this reason for suppressing

branching. For the remaining reason we simply have to deal with the

fact that Solithane in its glassy state may be a considerably

tougher material than Homalite 100. If that is so, our failure to

achieve branching in Solithane 113 may simply due to the fact

that insufficently high pressures have been applied to date.

Let us now inquire into the mechanism of branching; the

basic question here is whether the phenomenon occurs in a

continuous growth process or whether branching is the result of

secondary fractures that link with the main crack. To date

evidence suggests that both occur.

One of the possible mechanisms is associated with crack path

instability: Suppose the crack path deviates slightly from the

original, straight path. We speak then of crack path stability if
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the deviation increases, and stability if the path returns to the

original, straight one. For quasistatic problems crack path

instability is fostered by tension at the crack tip in the

direction of crack growth (first order term in the singularity

expansion) while stability is enhanced by a compressive stress.

We first observe that in the early stages of crack propagation

with our loading configuration, the crack path is stable. Figure

12 shows three photographs of fracture surfaces in which the

left hand side depicts the initial crack. Note that in each case

the initial crack does not fall on the same plane. The crack

face is composed of several different planes which have different

levels and directions. In each case these different crack planes

coalesce into one main crack. We deal here thus clearly with

crack path stability.

This stability may be explained in terms of energy expenditure.

Clearly the crack wants to propagate at the maximal rate with a

minimum of energy expenditure. The growth of the crack on

different planes obviously requires more energy than for growth

in one plane, because the total area generated is larger than

for one planar crack if the local crack speeds are equal. Thus

one deduced that for low intensity cracks, when just enough energy

is available to drive the crack, that path is stable.

We insert here a side remark concerning figure 12 that

relates to the surface roughness. The top figure results from a
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test at 600 C and 357 psi pressure: The fracture surface is

glass-like and smooth. However, in the other two photographs,

resulting from tests at 805 psi and 800 C and 100 0 C, respectively,

one notices increased roughness with temperature increase, which

roughness, however disappears. The conclusion is thus close at

hand that this feature is associated with the transient generation

of the plastic zone established as part of the initial loading

process.

We return now to the question of crack path stability and

consider the behavior of the crack at branching. Figure 13 shows

views of surfaces that are mating up to the line of branching.

While it is difficult to reproduce the pertinent features of

these fracture surfaces, a direct visual inspection which renders

the true three dimensional geometry reveals the following: In the

upper photograph the upper edge exposes a continuous surface

across the branch "line"; this represents a smooth turning of the

crack near the specimen surface away from the main crack and into

the paper (i.e. away from the viewer). The same feature is

observed in the upper right hand corner of the lower photograph,

which is near the specimen surface opposite from that referred to

in connection with the upper photograph. Thus, on one side of

the specimen a crack grows away from the main crack in, say, the

"up"-direction while at the opposing specimen surface, the surface

near crack is in the "down" direction. Thus branching would occur

in an assymmetric fashion from the surface of the specimen, with

subsequent crack growth sidewards towards the middle. Evidence of
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this "side-cutting" is visible in the upper photograph of figure

13 where striations at right angles to the direction of general

crack growth indicate that locally and temporarily crack

progression occurred transversely to the plate. This mechanism may

be helpful for the interpretation of continuous surface generation

and energy release rate before and after branching [27]. We note

that we are aware, that this potential mechanism of branching is

tied to the finite thickness of the test geometry, and unduely so.

For this reason we are now examining also discontinuous mechanisms

in which secondary fractures away from the main crack become

responsible to open new paths for crack propagation.

8 DYNAMIC CRACK PROPAGATION BEHAVIOR - CRACK SPEED

DEPENDENCE ON LOADING AND TEMPERATURE

In the previous section we have indicated the test matrices

on temperature and (nominal) applied pressure for Homalite 100 and

for Solithane 113. In this section we discuss the crack propagation

response resulting from these investigations. Let us consider the

Homalite tests first. A typical high speed photograph of caustics

(60°C, 805 psi) is shown in Fig. 14(a) and (b) for the measurement

of the history of the stress intensity factor. The stress intensity

histories for the test matrix are shown in figure 14(c). We note

that even after the cracks have started to run there is a significant

variation in the magnitude of the stress intensity factor, however,

there are no sudden changes in these traces, so that, on first

inspection, the assumption made in the analytic section, namely

that aK/3T=O, is not unreasonable. It turns out, that inspite of
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the readily measurable variation in the stress intensity factor

the velocity of crack propagation is constant within the accuracy

of our measurements. These results are plotted in figure 15 where

one notes a clear trend to lower velocities with increasing

temperature. Note also that there exists a minor decrease in the

stress intensity factor with increasing temperature - also clear

from figure 16 - which arises from the material softening and the

effect which this softening has on the stresses transmitted from

the copper loading strips to the specimen. This latter phenomenon

will be considered in more detail. later on.

In figure 17 we compare these tests at elevated temperatures

to room temperature tests performed by other investigators [28]. Again

one observes the clear temperature related trend to lower crack speeds

for comparable stress intensity factors. This observation is docu-

mented graphically more clearly in figure 16.

For Solithane 113 we show the time traces for the stress

intensity factor in figure 18. Note that the initial portions of these

traces are estimated and thus shown dotted. The uncertainty arises

from the following fact! The pressure producing copper conductor in

the crack generates a steady state pressure on the crack surfaces

which, in turn, generates a caustic at the bend of the copper strip.

This bend is close to the crack tip: the caustic associated with

this bend remains stationary as the crack grows.

Because the caustic induced by the copper strip is large the

smaller caustic resulting from the crack tip stresses is first

engulfed in the former and some time of crack growth has to pass
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before the dynamically induced caustic emerges from the dark

field of the initial stationary caustic.

The sequence shown in figure 18 indicates the response of

crack growth in tests conducted at different temperatures. As

discussed in section 7 there are (probably) two causes for the

change in crack speed, one being the change of material compliance

with temperature, the other the effect of energy dissipation

associated with different temperatures. At this time these two

effects cannot be separated clearly; a more complete test matrix

is required. In addition, our newly developed capability of

evaluating caustics for cracks running in viscoelastic solids

allow us now to attempt the construction of this test matrix in

terms of stress intensity factor and temperature instead of the

nominal pressure applied to the crack faces. For now we merely

plot in figure 19 the velocity of crack growth as a function of

temperature, being well aware that this dependence is at least

in part due to the change in stress intensity, (also indicated in

figure 18).

9 ESTIMATION OF LOAD VARIATION RESULTING FROM TEMPERATURE

INDUCED CHANGES IN MATERIAL STIFFNESS

Recall that the pressure is applied to the crack surfaces

via a double bent copper strip in which a mechanical force is

generated by virtue of a flowing current and the induced magnetic

field (cf. figure 20). The pressure depends on the separation of
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the two conductors. If the separation is small, the pressure is

high; if the separation is large the converse is true. Thus if a

relatively rigid material is used in the experiments the

separation of the conductors will remain small for the duration

of the test. However, if the material is relatively compliant

then the induced force will separate the crack surfaces during

the later phase of the pressure pulse, carrying the conductor

with it and allow wider separation. Therefore during the latter

portions of the experiments the driving force will drop off. This

phenomenon may be responsible for generally reducing the stresses

at the crack tip so that they are lower than we might have

otherwise expected. It is the purpose of the immediate following

developments to estimate the amount of pressure loss due to this

effect. This pressure loss is then translated into an estimate of

the stress intensity factor history if the crack tip were to

remain stationary. This procedure will provide us with a rough

estimate, therefore, of a more realistic stress intensity factor

history even at a tip of a moving crack indicating primarily

substantial loss over which one might expect from a high

modulus test material.

In addition to the pressure reduction due to the relatively

low rigidity of one of the test materials one finds that the

viscoelastic response has an effect on this stress intensity

factor history. The magnitude of this effect, which turns out to

be also a reduction in the stress intensity factor, is estimated
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by drawing on the computation for the stress intensity factor

from the anti-plane problem discussed in section 3.

We start with considering the effect of material rigidity

without specific viscoelastic response. The ingredient of this

estimation is first a knowledge of the instantaneous force supplied

by the conductor strips to the crack faces as a function of this

separation. The analytical treatment of this has been given in a

previous report [29] and is reproduced here in figure 2L If one

knew therefore what the instantaneous separation of the strips

is one could deduce the pressure pulse history to the crack

surface. Accordingly the strip separation has been determined

photographically in an experiment. The result of this is

shown in figure 22 and the time dependent evaluation in

figure 23. Using figures 21 and 23 one computes therefore the

instantaneous pressure applied to the crack surfaces as given in

figure 24.

Note that for the compliant Solithane material which

corresponded to the properties at 20 0 C there is a considerable

loss of pressure at times roughly beyond 50-60 ps. The present

arrangement therefore produces a load history that is more

appropriately represented by a pressure pulse on the order of

60 ps roughly with a ramp type loading and ramp type unloading.

Drawing again for a moment on purely elastic results which have

been calculated elsewhere [30] and as shown in the left inset in

figure 25, we can, by a superposition of that result in terms of

loading and delayed unloading of the same type, compute the stress
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intensity factor for a pressure pulse as indicated in the right

inset in that figure. Thus while a relatively stiff material such

as Homalite 100 at room temperature would produce significant

stress intensities for times on the order of a 100 to 150 ws the

softer Solithane type of material at least for temperatures around

room conditions would produce stress intensities that are

approximately 25% of that produced in Homalite 100, although at

short times up to approximately 50 ps the same kind of stress

intensities would probably result.

Let us now turn to estimate the effect of viscoelastic

behavior on this stress intensity factor. In order to do this we

draw on the results in the earlier section 3 in which this stresL

intensity factor for the anti-plane shear mode in a viscoelastic

material was considered. Because we lack any type of viscoelastic

stress analyses for the opening mode - i.e. for the inplane

deformation mode of the crack - we make use of the antiplane

shear mode for an estimation of the amount by which the elastic

stress intensity factor might be reduced asdresult of viscoelastic

material properties.

Recall that the Laplace transform of this stress intensity

factor was given as equation (25);

R1I2 ~ 0 (25)
_12J s s
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note also that in the event of purely elastic properties in which

the shear modulus is given by the glassy shear modulus

= 0ol (50)

The transform of the glassy elastic intensity would be given by

= 2 Uo ToK 2(51)
g.e. s P s

deviding equation 50 by 52 results in

_ (52)
'o

g.e.

The Laplace inverse of this equation poses in general some

difficulty and must therefore be accomplished by numerical means.

However, we believe that for our present estimation purposes it is

sufficient to accomplish this inversion in terms what is known

as a quasi elastic solution and write therefore that the stress

intensity factor is given as

K(t) = K {ii(t) } (53)g.e. UJo

The function in curly brackets is shown in figure 26 at 00 C. The

time dependent stress intensity factor as given by equation (53)

is then shown in figure 27; for purely elastic response the ratio

of 1(t)/W o equals unity. Thus the curve indentified as the

elastic one corresponds to the glassy response of the material. It
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is clear that Solithane 113 at 0 0 C produces approximately only

half the stress intensity factor that one would expect from the

material if it were to undergo only small deformations and respond

with its glassy properties. This statement is more thoroughly

amplified by showing also the effect of lowering the temperature

in that at a temperature of -20°C this stress intensity factor is

only marginally smaller than the one represented for purely

elastic properties. Recall now that fracture tests were conducted

at temperatures of -200 C and lower. Hence for those tests it does

not appear that viscoelasticity is a significant detriment to

the generation of the stress intensity.
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